Introduction

Key question: Does data assimilation lead to improvements in the estimate of initial state? Is the error in the observations contained?

We study data assimilation for the 2D viscous, incompressible Navier-Stokes (N-S) equations, with L-periodic boundary conditions as a simpler proxy for the full governing equations:

\[\frac{\partial U}{\partial t} - \nu \Delta U + (U, \nabla) U + \nabla p = f, \]

where \(U \) is the velocity, \(\nu \) is the kinematic viscosity, \(f \) the time independent body forcing and \(p \) the pressure.

Navier-Stokes equations

We assume that the model is a perfect representation of the atmosphere, so that a solution \(U(t) \) represents the true weather. We can express \(U \) in terms of its Fourier series

\[U = \sum_{k \in \mathbb{Z}^2} U_k e^{i k \cdot x}, \]

where \(k \) is a 2-D non-zero integer vector.

The N-S equations (1) can be reformulated in Fourier space, while the zero divergence condition and periodicity allows us to remove the pressure term. In this formulation, (1) becomes

\[\frac{dU_k}{dt} + i \nu k^2 U_k + B(U, U) = f_k, \]

(5)

which is an ODE and \(A \) and \(B \) are operators s.t. \((AU, v) = \int_{\Omega} -\Delta U \cdot v \, \text{d}x \), \((B(U, v)) = \int_{\Omega} (U \cdot \nabla) v \, \text{d}x \).

A model for observations

An observation of the weather at time \(t_n \) is given by \(P_t U(t_n) + \sigma R_n \), where \(\sigma R_n \) models the error in the observation.

We suppose that we can observe Fourier modes of the solution and we define a projection \(P_t \) onto the observation space given by

\[P_t U = \sum_{k \in \mathbb{Z}^2} U_k e^{i k \cdot x}, \]

where \(\lambda \) is a finite positive integer. We say that \(P_t \) is a projection onto the ‘low’ modes and \(\lambda \) is a measure of the size of the observed space or the largest wave number still observed.

A discrete data assimilation algorithm

Straightforward replacement of model values by observations.

The approximating solution of discrete data assimilation is obtained by inserting the observations at discrete times \(t_n \) such that

\[u_0 = \eta + P_t U_0 + \sigma R_0 \]

and

\[u_n = Q_t \left(t_n, U_{n-1}, u_{n-1} \right) + P_t U(t_n) + \sigma R_n \]

(2)

where \(\psi \) is the semi-flow of (1), \(\eta \) is the initial guess and \(Q_t \) is the projection onto the unobserved space. Then, the approximating solution \(u(t) \) is a piece-wise continuous in time function defined by

\[u_n(t) = \psi \left(t; t_n, u_{n-1} \right) \quad \text{for} \quad t \in [t_n, t_{n+1}). \]

(3)

Data assimilation error

The data assimilation error \(\delta(t) \) is the difference between the true and approximating solution. It is a piece-wise continuous in time function defined by

\[\delta(t) = U(t) - u(t) \]

in the interval \([t_n, t_{n+1}) \).

Main Theorem

We are able to prove a rigorous estimate derived using analytical properties of the underlying dynamics.

Theorem Let \(U \) be as defined by (5) and \(\delta \) be the data assimilation error as defined by (4) and suppose that \(\mathbb{E}(\| R_n \|^2) < \infty \). Then, for any data assimilation interval \(h = t_{n+1} - t_n > 0 \) a finite \(\lambda \) such that for all \(\lambda > \lambda^* \),

\[\limsup_{n \to \infty} \left(\| u(t_n) - \delta \| \right) \leq 0 \]

a.s., where \(B_n \) is a stationary a.s. finite process and \(\sigma^2 B_n \to 0 \) as \(\sigma \to 0 \) a.s.

Main assumptions

Noise: We assume that the observation error is random, unbounded and \(R_n \) is a stationary, tempered process with zero mean and \(\mathbb{E}(R_n^2) = 1 \). Therefore \(\mathbb{E}\left(\| R_n \|^2 \right) = \sigma^2 < \infty \) and \(\sigma^2 \) is the variance of observation noise.

We note that if \(R_n \) does not have zero mean, this would represent a systematic error, which would likely be corrected for and therefore we can make the simplifying assumption.

Model: There is no model error. That is, the dynamical system (1) is a perfect representation of the atmosphere and we use it for the forecasting.

Observations: We can observe the ‘low’ Fourier modes of the true solution.

Proof part I: The error equation

Using the bi-linearity of \(B \) and the fact that the data assimilated solution satisfies the equation in every interval \([t_n, t_{n+1}) \) we obtain the equation:

\[\frac{d\delta}{dt} + \nu k^2 \delta + B(U, \delta) + B(\delta, U) - B(\delta, \delta) = 0. \]

Using the above, as well as estimates as in [1] and iterating over the intervals \([t_n, t_{n+1}) \), we obtain:

Lemma 1 \(\| \delta(t_{n+1}) \| \leq M_0(h) \| \delta(t_n) \| + \sigma^2 \| R_n \|^2 \),

(7)

where \(\| \cdot \| \) is the \(\ell^2 \) norm and \(M_0(h) \) are functions that depend on \(\delta(t_0) \).

Proof part II: Controlling the error

To obtain a meaningful bound on the error \(\| \delta(t_{n+1}) \| \), we would need that RHS of (7) is almost surely finite in the long term. This will be the case if we can make \(M_0 < 1 \) for all \(k \).

Since \(\delta(t_0) \) is stochastic, the \(M_0 \) are also stochastic and therefore it is not, in general, possible to guarantee that \(M_0 < 1 \) for all \(k \) for any value of \(h \). However, we are able to use the Ergodic Theorem to show that if \(\mathbb{E}(M_0) < 1 \), it ensures that \(M_0 \) is ‘often enough’.

That is, for almost all realizations of the sequence \(\{ M_0 \} \), the proportion of \(M_0 < 1 \) is sufficient to ensure that the error remains almost surely finite.

References