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Introduction to Stochastic Hopf Bifurcation

We study the two-dimensional normal form of a Hopf bifurcation with additive white noise
and phase-amplitude coupling:

dy1 = (βy1 − ωy2 − (ay1 + by2)(y 2
1 + y 2

2 ))dt + σdW1(t),

dy2 = (βy2 + ωy1 − (ay1 − by2)(y 2
1 + y 2

2 ))dt + σdW2(t),
(1)

where W1,W2 are independent Brownian motions and ω, a, σ, b > 0. If σ = 0, such a
system exhibits a supercritical Hopf bifurcation for bifurcation parameter β ∈ R:

We investigate the system for σ > 0 and study the impact of the parameter b which
represents shear via phase-amplitude coupling. This can be better seen in the polar
coordinates

dr =

(
βr − ar 3 +

σ2

2r

)
dt + σdWr(t),

dφ = [ω + br 2]dt +
σ

r
dWφ(t).

Application to climate science: In the Zebiak-Cane model, which describes the tropical
Pacific annual mean climate state, a Hopf bifurcation occurs at a critical value of the
ocean-atmosphere coupling strength β. Dijkstra et al. (2008) study the impact of noise on
the Hopf bifurcation but don’t provide a dynamical analysis. Further, they don’t consider
phase-amplitude coupling. We show transitions between ordered and chaotic behaviour
depending on continuous time noise and shear, partially solving a long-standing theoretical
problem posed by Lai-Sang Young and co-workers.

Numerical observations

We start simulations at times t < 0 and run the system until time 0. This allows to study
fixed attracting objects. We make the following observations for β > 0, i.e. after the
bifurcation. First we observe that, for small b ≥ 0, trajectories with different initial
conditions but exposed to the same noise realisations synchronise:

(a) t = 0 (b) t = 3 (c) t = 20

For b ≥ 8, the pullback attractor seems to show chaotic behaviour:

(d) t = 0 (e) t = 3 (f) t = 100

Random Dynamical Systems induced by an SDE and invariant measures

We consider the problem of stochastic bifurcations within the framework of random
dynamical systems: A random dynamical system (RDS) on the measurable space (X ,B)
over a metric dynamical system (Ω,F ,P, (θt)t∈R) with time T is a B(T)

⊗
F
⊗
B-meas.

map
ϕ : T× Ω× X → Rd , (t, ω, x) 7→ ϕ(t, ω)x ,

which satisfies for all ω ∈ Ω and t, s ∈ T the cocycle property

ϕ(0, ω) = id, ϕ(t + s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω).

A stochastic differential equation(SDE) of the form

dXt = f (Xt)dt + σ(Xt)dWt X0 = x , on Rd , (2)

induces a continuous RDS (θ, ϕ) for time T = R+ under typical Lipschitz and growth
conditions. In this case (Ω,P) is the Wiener space and θt the ergodic shift map.

A probability measure µ on Ω×Rd is invariant for the RDS if for Θt : Ω×X → Ω×X
denoting the skew-product flow, i.e. Θt(ω, x) = (θtω, ϕ(t, ω)x),

1. Θtµ = µ for all t ∈ T,

2. the marginal of µ on Ω is P, i.e. µ(dω, dx) = µω(dx)P(dω).

Random attractors and Lyapunov exponents

Let the state space X be a Polish space (e.g. Rd as in our case): A random attractor
A : Ω→ P(X ) of the RDS (θ, ϕ) is a P-a.s. compact set valued mapping with

1.ϕ(t, ω)A(ω) = A(θtω) for all t > 0 and a.a. ω ∈ Ω,

2. limt→∞ d(ϕ(t, θ−tω)B ,A(ω)) = 0 P-a.s. for every compact B ⊂ X .

If attraction in the limit just holds for all points x ∈ X , we call it a random point
attractor. The disintegrations µω of an ergodic invariant measure µ are supported on the
random point attractor.

Consider the SDE (2): If f ∈ C 1,δ and σ ∈ C 2,δ for some δ > 0, the induced RDS (θ, ϕ) is
C 1. If it has an ergodic inv. measure µ and satisfies an integrability condition, there are real
numbers λ1 > · · · > λp, the Lyapunov exponents of ϕ w.r.t. µ, s.t. for µ-a.e. (ω, x)
and for all 0 6= v ∈ Rd

lim
t→∞

1

t
log ‖Dϕ(t, ω, x)v‖ ∈ {λi}p

i=1.

Theorem (Synchronisation)

The random dynamcial system induced by the stochastic differential equation (1) possesses
a random attractor A(ω) and exhibits synchronisation, i.e. A(ω) is a singleton, for any
β ∈ R if λ1 < 0. We know that λ1 < 0 if

a) β ≤ 0 and b < a (and/or σ small),

b) β > 0 and 0 ≤ b ≤ ac
2(α+c) ≤

1
2a, where c = O(σ).

c) we fix b ≥ 0, define ε = σ2a2/β2 and let ε→ 0 (λ1 = Cε +O(ε2) with C < 0).

Cylinder model

In the case of large shear we expect λ1 > 0 which indicates the existence of a chaotic
attractor. As this is difficult to show for (1), we consider the following simlified model of a
stochastically driven limit cycle

dy = −αy dt + σf (ϑ) ◦ dW 1
t ,

dϑ = (1 + by) dt ,
(3)

where (y , ϑ) ∈ R× S1 are cylindrical amplitude-phase coordinates, and W 1
t denotes

one-dimensional Brownian motion entering the equation as noise of Stratonovich type. If
σ = 0, the ODE (3) has a globally attracting limit cycle at y = 0 if α > 0. If σ 6= 0, the
amplitude is driven by phase-dependent noise. The real parameter b induces shear as before.
For the parameter values σ = 0.5, α = 1.5, b = 3, we observe synchronisation.

(g) t = 0 (h) t = 3 (i) t = 20

For parameter values σ = 2, α = 1.5, b = 3, we observe chaos:

(j) t = 0 (k) t = 3 (l) t = 100

Theorem (Transition to chaos)

Consider the stochastic differential equation (3) where f : S1 ' [0, 1)→ R is continuous
and piecewise linear with constant absolute value of the derivative almost everywhere. Then
for all α > 0 and b 6= 0, there exist σ−(α, b) ≤ σ0(α, b) ≤ σ+(α, b) such that the top
Lyapunov exponent λ1(α, b, σ) of the random attractor of (3) satisfies

λ1(α, b, σ)


< 0 if 0 < σ < σ−(α, b) ,

= 0 if σ = σ0(α, b) ,

> 0 if σ > σ+(α, b) .

This has the following implications: If 0 < σ < σ−(α, b), the random point attractor of (3)
is an attracting random equilibrium. If σ > σ+(α, b) the random point attractor of system
(3) is a random strange attractor (and not an attracting random equilibrium).
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