Synchronisation and Chaos in Stochastic Hopf Bifurcation Maximilian Engel,

Department of Mathematics, Imperial College London

(1)

Reading

(3)

Imperial College London

Introduction to Stochastic Hopf Bifurcation

We study the two-dimensional normal form of a Hopf bifurcation with additive white noise and phase-amplitude coupling:

> $dy_1 = (\beta y_1 - \omega y_2 - (ay_1 + by_2)(y_1^2 + y_2^2))dt + \sigma dW_1(t),$ $dy_2 = (\beta y_2 + \omega y_1 - (ay_1 - by_2)(y_1^2 + y_2^2))dt + \sigma dW_2(t),$

where W_1, W_2 are independent Brownian motions and $\omega, a, \sigma, b > 0$. If $\sigma = 0$, such a system exhibits a supercritical Hopf bifurcation for bifurcation parameter $\beta \in \mathbb{R}$:

We investigate the system for $\sigma > 0$ and study the impact of the parameter b which represents shear via phase-amplitude coupling. This can be better seen in the polar

Random attractors and Lyapunov exponents

Let the state space X be a Polish space (e.g. \mathbb{R}^d as in our case): A random attractor $A: \Omega \to \mathcal{P}(X)$ of the RDS (θ, φ) is a \mathbb{P} -a.s. compact set valued mapping with 1. $\varphi(t, \omega)A(\omega) = A(\theta_t \omega)$ for all t > 0 and a.a. $\omega \in \Omega$, 2. $\lim_{t\to\infty} d(\varphi(t, \theta_{-t}\omega)B, A(\omega)) = 0 \mathbb{P}$ -a.s. for every compact $B \subset X$.

If attraction in the limit just holds for all points $x \in X$, we call it a **random point attractor**. The disintegrations μ_{ω} of an ergodic invariant measure μ are supported on the random point attractor.

Consider the SDE (2): If $f \in C^{1,\delta}$ and $\sigma \in C^{2,\delta}$ for some $\delta > 0$, the induced RDS (θ, φ) is C^1 . If it has an ergodic inv. measure μ and satisfies an integrability condition, there are real numbers $\lambda_1 > \cdots > \lambda_p$, the **Lyapunov exponents** of φ w.r.t. μ , s.t. for μ -a.e. (ω, x) and for all $0 \neq v \in \mathbb{R}^d$

$$\lim_{t\to\infty}\frac{1}{t}\log\|D\varphi(t,\omega,x)\mathbf{v}\|\in\{\lambda_i\}_{i=1}^p.$$

Theorem (Synchronisation)

coordinates

 $dr = \left(eta r - ar^3 + rac{\sigma^2}{2r}
ight) dt + \sigma dW_r(t), \ d\phi = [\omega + br^2] dt + rac{\sigma}{r} dW_{\phi}(t).$

Application to climate science: In the Zebiak-Cane model, which describes the tropical Pacific annual mean climate state, a Hopf bifurcation occurs at a critical value of the ocean-atmosphere coupling strength β . Dijkstra et al. (2008) study the impact of noise on the Hopf bifurcation but don't provide a dynamical analysis. Further, they don't consider phase-amplitude coupling. We show transitions between ordered and chaotic behaviour depending on continuous time noise and shear, partially solving a long-standing theoretical problem posed by Lai-Sang Young and co-workers.

Numerical observations

We start simulations at times t < 0 and run the system until time 0. This allows to study fixed attracting objects. We make the following observations for $\beta > 0$, i.e. after the bifurcation. First we observe that, for small $b \ge 0$, trajectories with different initial conditions but exposed to the same noise realisations synchronise:

The random dynamcial system induced by the stochastic differential equation (1) possesses a random attractor $A(\omega)$ and exhibits synchronisation, i.e. $A(\omega)$ is a singleton, for any $\beta \in \mathbb{R}$ if $\lambda_1 < 0$. We know that $\lambda_1 < 0$ if a) $\beta \leq 0$ and b < a (and/or σ small), b) $\beta > 0$ and $0 \le b \le \frac{ac}{2(\alpha+c)} \le \frac{1}{2}a$, where $c = \mathcal{O}(\sigma)$. c) we fix $b \ge 0$, define $\varepsilon = \sigma^2 a^2 / \beta^2$ and let $\varepsilon \to 0$ ($\lambda_1 = C\varepsilon + \mathcal{O}(\varepsilon^2)$ with C < 0).

Cylinder model

In the case of large shear we expect $\lambda_1 > 0$ which indicates the existence of a chaotic attractor. As this is difficult to show for (1), we consider the following simlified model of a stochastically driven limit cycle

$$\begin{aligned} \mathrm{d} \mathbf{y} &= -\alpha \mathbf{y} \, \mathrm{d} t + \sigma f(\vartheta) \circ \mathrm{d} W_t^1 \,, \\ \mathrm{d} \vartheta &= (1 + b\mathbf{y}) \, \mathrm{d} t \;, \end{aligned}$$

where $(y, \vartheta) \in \mathbb{R} \times \mathbb{S}^1$ are cylindrical amplitude-phase coordinates, and W_t^1 denotes one-dimensional Brownian motion entering the equation as noise of Stratonovich type. If $\sigma = 0$, the ODE (3) has a globally attracting limit cycle at y = 0 if $\alpha > 0$. If $\sigma \neq 0$, the amplitude is driven by phase-dependent noise. The real parameter b induces shear as before. For the parameter values $\sigma = 0.5, \alpha = 1.5, b = 3$, we observe synchronisation.

(h) t = 3(i) t = 20(g) t = 0

For parameter values $\sigma = 2, \alpha = 1.5, b = 3$, we observe chaos:

Random Dynamical Systems induced by an SDE and invariant measures

Theorem (Transition to chaos)

We consider the problem of stochastic bifurcations within the framework of random dynamical systems: A random dynamical system (RDS) on the measurable space (X, \mathcal{B}) over a metric dynamical system $(\Omega, \mathcal{F}, \mathbb{P}, (\theta_t)_{t \in \mathbb{R}})$ with time \mathbb{T} is a $\mathcal{B}(\mathbb{T}) \bigotimes \mathcal{F} \bigotimes \mathcal{B}$ -meas.

Consider the stochastic differential equation (3) where $f : \mathbb{S}^1 \simeq [0, 1) \rightarrow \mathbb{R}$ is continuous and piecewise linear with constant absolute value of the derivative almost everywhere. Then for all $\alpha > 0$ and $b \neq 0$, there exist $\sigma_{-}(\alpha, b) \leq \sigma_{0}(\alpha, b) \leq \sigma_{+}(\alpha, b)$ such that the top

map

 $\varphi: \mathbb{T} \times \Omega \times X \to \mathbb{R}^d, \quad (t, \omega, x) \mapsto \varphi(t, \omega) x,$ which satisfies for all $\omega \in \Omega$ and $t, s \in \mathbb{T}$ the *cocycle* property $\varphi(0,\omega) = \mathrm{id}, \quad \varphi(t+s,\omega) = \varphi(t,\theta_s\omega) \circ \varphi(s,\omega).$

A **stochastic differential equation**(SDE) of the form

 $dX_t = f(X_t)dt + \sigma(X_t)dW_t$ $X_0 = x$, on \mathbb{R}^d ,

induces a continuous RDS (θ, φ) for time $\mathbb{T} = \mathbb{R}_+$ under typical Lipschitz and growth conditions. In this case (Ω, \mathbb{P}) is the Wiener space and θ_t the ergodic shift map.

A probability measure μ on $\Omega \times \mathbb{R}^d$ is invariant for the RDS if for $\Theta_t : \Omega \times X \to \Omega \times X$ denoting the skew-product flow, i.e. $\Theta_t(\omega, x) = (\theta_t \omega, \varphi(t, \omega)x)$, 1. $\Theta_t \mu = \mu$ for all $t \in \mathbb{T}$, 2. the marginal of μ on Ω is \mathbb{P} , i.e. $\mu(d\omega, dx) = \mu_{\omega}(dx)\mathbb{P}(d\omega)$.

Lyapunov exponent $\lambda_1(\alpha, b, \sigma)$ of the random attractor of (3) satisfies

 $\lambda_1(lpha, b, \sigma) \left\{ egin{array}{ll} < 0 & \mbox{if } 0 < \sigma < \sigma_-(lpha, b) \,, \ = 0 & \mbox{if } \sigma = \sigma_0(lpha, b) \,, \ > 0 & \mbox{if } \sigma > \sigma_+(lpha, b) \,. \end{array}
ight.$

This has the following implications: If $0 < \sigma < \sigma_{-}(\alpha, b)$, the random point attractor of (3) is an attracting random equilibrium. If $\sigma > \sigma_+(\alpha, b)$ the random point attractor of system (3) is a random strange attractor (and not an attracting random equilibrium).

References

(2)

M. Engel, J.S.W. Lamb, M. Rasmussen. Bifurcation analysis of a stochastically driven limit cycle, arXiv1606.01137[math.PR], under review, 2016. T.S. Doan, M. Engel, J.S.W. Lamb, M. Rasmussen. Bifurcation scenarios for Hopf systems driven by additive noise, preprint, 2017.

maximilian.engel13@imperial.ac.uk