Synchronisation and Chaos in Stochastic Hopf Bifurcation
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Introduction to Stochastic Hopf Bifurcation

We study the two-dimensional normal form of a Hopf bifurcation with additive white noise
and phase-amplitude coupling:

dy1 = (By1 — wys — (ay1 + by)(yf + y3))dt + odWA(t),

dys = (Bys + wyr — (ay1 — bya)(yi + y3))dt + adWa(t),

where Wi, W, are independent Brownian motions and w,a,0,b > 0. If 0 = 0, such a
system exhibits a supercritical Hopf bifurcation for bifurcation parameter 5 € R:
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We investigate the system for ¢ > 0 and study the impact of the parameter b which

represents shear via phase-amplitude coupling. This can be better seen in the polar
coordinates

2
dr <5r —ar’ + g) dt + odW,(t),

r

dp = [w + bri]dt + %dW¢( )

Application to climate science: In the Zebiak-Cane model, which describes the tropical
Pacific annual mean climate state, a Hopf bifurcation occurs at a critical value of the
ocean-atmosphere coupling strength 5. Dijkstra et al. (2008) study the impact of noise on
the Hopf bifurcation but don't provide a dynamical analysis. Further, they don't consider
phase-amplitude coupling. We show transitions between ordered and chaotic behaviour
depending on continuous time noise and shear, partially solving a long-standing theoretical
problem posed by Lai-Sang Young and co-workers.

Numerical observations

We start simulations at times t < 0 and run the system until time 0. This allows to study
fixed attracting objects. We make the following observations for 5 > 0, i.e. after the
bifurcation. First we observe that, for small b > 0, trajectories with different initial
conditions but exposed to the same noise realisations synchronise:
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Random attractors and Lyapunov exponents

Let the state space X be a Polish space (e.g. R as in our case): A random attractor
A Q — P(X) of the RDS (0, ¢) is a P-a.s. compact set valued mapping with

L. o(t,w)A(w) = A(Ow) for all t > 0 and a.a. w € ,
2. lim; o d(p(t,0_,w)B, A(w)) = 0 P-a.s. for every compact B C X.

If attraction in the limit just holds for all points x € X, we call it a random point

attractor. The disintegrations 11, of an ergodic invariant measure 1 are supported on the
random point attractor.

Consider the SDE (2): If f € C1% and 0 € C?? for some § > 0, the induced RDS (0, ¢) is
C!. If it has an ergodic inv. measure ;1 and satisfies an integrability condition, there are real
numbers A\; > --- > ),, the Lyapunov exponents of ¢ w.r.t. u, s.t. for p-a.e. (w, x)
and for all 0 # v € R¢

1
lim —log [[Dy(t, w, x)v|| € {Ai} 7.

Theorem (Synchronisation)

The random dynamcial system induced by the stochastic differential equation (1) possesses
a random attractor A(w) and exhibits synchronisation, i.e. A(w) is a singleton, for any

B eRifA\ <0. We know that A\; < 0 if

a)B <0 and b < a (and/or o small),

b)) >0and0 < b< 2(o‘jic) < %a, where ¢ = O(o).

c) we fix b > 0, define e = 0°a®/3% and let ¢ — 0 (\; = Ce + O(&?) with C < 0).

Cylinder model

In the case of large shear we expect A1 > 0 which indicates the existence of a chaotic
attractor. As this is difficult to show for (1) we consider the following simlified model of a
stochastically driven limit cycle

C_y — —Ckydt+0f(19)Oth1, (3)
dd = (1+ by)dt

where (y,1) € R x St are cylindrical amplitude-phase coordinates, and W} denotes
one-dimensional Brownian motion entering the equation as noise of Stratonovich type. If

o = 0, the ODE (3) has a globally attracting limit cycle at y =0 if « > 0. If o #£ 0, the
amplitude is driven by phase-dependent noise. The real parameter b induces shear as before.
For the parameter values 0 = 0.5, a = 1.5, b = 3, we observe synchronisation.
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For b > 8, the pullback attractor seems to show chaotic behaviour:
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Random Dynamical Systems induced by an SDE and invariant measures

We consider the problem of stochastic bifurcations within the framework of random
dynamical systems: A random dynamical system (RDS) on the measurable space (X, B)
over a metric dynamical system (2, F, P, (0;):cr) with time T is a B(T) Q) F &X) B-meas.

map
p:TxQAxX =R (t,w,x)— o(t,w)x,
which satisfies for all w € €2 and t,s € T the cocycle property

e(0,w) =1id, @(t+s,w) = @(t,0sw) o p(s,w).

A stochastic differential equation(SDE) of the form

dX; = f(X;)dt + o(X)dW, Xo=x, onRY, (2)

induces a continuous RDS (0, ¢) for time T = R, under typical Lipschitz and growth
conditions. In this case (£2,P) is the Wiener space and 6; the ergodic shift map.

A probability measure 1 on Q x RY is invariant for the RDS if for ©, : Q x X — Q x X
denoting the skew-product flow, i.e. ©4(w, x) = (6w, Y(t, w)x),

1.O;uu=pforall t €T,

2. the marginal of 11 on Qis P, i.e. pu(dw, dx) = p,(dx)P(dw).

http://wwwf.imperial.ac.uk/ me613/
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For parameter values 0 = 2, = 1.5, b = 3, we observe chaos:
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Theorem (Transition to chaos)

Consider the stochastic differential equation (3) where f : S* ~[0,1) — R is continuous
and piecewise linear with constant absolute value of the derivative almost everywhere. Then
for all « > 0 and b # 0, there exist o_(a, b) < oo(a, b) < 0. (v, b) such that the top
Lyapunov exponent \i(c, b, o) of the random attractor of (3) satisfies

<0 if0<o<o_(a,b),
Mo, b, o) =0 ifo=oy(a,b),
>0 ifo>o.(a,b).

This has the following implications: If 0 < o < o_(«, b), the random point attractor of (3)
is an attracting random equilibrium. If o > o («, b) the random point attractor of system
(3) is a random strange attractor (and not an attracting random equilibrium).
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